skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tripathi, Pushpanshu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we investigate in situ etching of β-Ga2O3 in a metalorganic chemical vapor deposition system using tert-butyl chloride (TBCl). We report etching of both heteroepitaxial 2¯01-oriented and homoepitaxial (010)-oriented β-Ga2O3 films over a wide range of substrate temperatures, TBCl molar flows, and reactor pressures. We infer that the likely etchant is HCl (g), formed by the pyrolysis of TBCl in the hydrodynamic boundary layer above the substrate. The temperature dependence of the etch rate reveals two distinct regimes characterized by markedly different apparent activation energies. The extracted apparent activation energies suggest that at temperatures below ∼800 °C, the etch rate is likely limited by desorption of etch products. The relative etch rates of heteroepitaxial 2¯01 and homoepitaxial (010) β-Ga2O3 were observed to scale by the ratio of the surface energies, indicating an anisotropic etch. Relatively smooth post-etch surface morphology was achieved by tuning the etching parameters for (010) homoepitaxial films. 
    more » « less